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TECHNICAL PAPER

Air quality and health benefits from potential coal power plant closures in Texas
Brian Strasert *, Su Chen Teh , and Daniel S. Cohan

Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

ABSTRACT
As power production from renewable energy and natural gas grows, closures of some coal-fired
power plants in Texas become increasingly likely. In this study, the potential effects of such closures
on air quality and human health were analyzed by linking a regional photochemical model with
a health impacts assessment tool. The impacts varied significantly across 13 of the state’s largest coal-
fired power plants, sometimes by more than an order of magnitude, even after normalizing by
generation. While some power plants had negligible impacts on concentrations at important moni-
tors, average impacts up to 0.5 parts per billion (ppb) and 0.2 µg/m3 and maximum impacts up to 3.3
ppb and 0.9 µg/m3 were seen for ozone and fine particulate matter (PM2.5), respectively. Individual
power plants impacted average visibility by up to 0.25 deciviews in Class I Areas. Health impacts arose
mostly from PM2.5 and were an order of magnitude higher for plants that lack scrubbers for SO2.
Rankings of health impacts were largely consistent across the base model results and two reduced
formmodels. Carbon dioxide emissions were relatively uniform, ranging from 1.00 to 1.26 short tons/
MWh, and can bemonetized based on a social cost of carbon. Despite all of these unpaid externalities,
estimated direct costs of each power plant exceeded wholesale power prices in 2016.

Implications: While their CO2 emission rates are fairly similar, sharply different NOx and SO2

emission rates and spatial factors cause coal-fired power plants to vary by an order of magnitude
in their impacts on ozone, particulate matter, and associated health and visibility outcomes. On
a monetized basis, the air pollution health impacts often exceed the value of the electricity
generated and are of similar magnitude to climate impacts. This suggests that both air pollution
and climate should be considered if externalities are used to inform decision making about
power-plant dispatch and retirement.
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Introduction

Coal-fired power plants are responsible for a significant
though declining portion of the nitrogen oxides (NOx

= NO and NO2), SO2, and CO2 emitted in the United
States (US EPA 2017a, 2018a). These emissions impact
human health and the environment in a variety of ways
(Lim et al. 2012; US EPA 2006, 2008a, 2008b, 2009).
Specifically, NOx contributes to the formation of tropo-
spheric ozone, and NOx and SO2 contribute to the forma-
tion of fine particulate matter (PM2.5). NO2, SO2, ozone,
and PM2.5 are all criteria pollutants subject to EPA ambient
air quality standards because of their health impacts, while
CO2 is a greenhouse gas.

Texas has historically led the nation in power-plant
emissions of each of these pollutants, emitting nearly
twice as much CO2 as second-ranked Florida (EIA
2018), more than twice as much SO2 as second-ranked
Missouri, and 24% more NOx than second-ranked
Indiana (US EPA 2016a). Utilization of coal-fired power

plants has been declining due to stagnant demand and
competition with cheaper natural gas and growing
amounts of wind and solar power, which have kept
power prices low (IEEFA 2016). As a result, four coal-
fired power plants in Texas (J T Deely, Monticello, Big
Brown, and Sandow) are scheduled to retire in 2018
(Luminant 2017a, 2017b). Analysts from IEEFA (2016),
Moody’s Investors Service (2016), and UBS Financial
(2016) all expect additional closures in coming years.

The impacts of power-plant emissions on air quality
have long been a focus of atmospheric research, including
airborne observations of power-plant plumes (Ryerson
et al. 2001), photochemical modeling (e.g., Bergin et al.
2008), and studies combining observations withmodeling
(e.g., Zhou et al. 2012). Ozone formation from power-
plant NOx depends strongly upon meteorology and bio-
genic emissions of hydrocarbons in surrounding areas
(Baker, Kotchenruther, and Hudman 2016; Ryerson
et al. 2001). Meanwhile, PM formation from NOx and
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SO2 depends strongly upon meteorology and concentra-
tions of ammonia downwind of the plant
(Karamchandani and Seigneur 1999; Pinder, Dennis,
and Bhave 2008). These factors, together with population
density and baseline morbidity and mortality rates, influ-
ence the health impacts of power-plant pollution per unit
of emissions (Levy, Baxter, and Schwartz 2009; Muller
and Mendelsohn 2007; Fann, Fulcher, and Hubbell
2009). Similarly, the propensity of a power plant to con-
tribute to regional haze depends upon spatially and tem-
porally varying factors (Odman et al. 2007). By contrast,
climate impacts of carbon dioxide are independent of the
location or timing of emissions since the greenhouse gas
is very long-lived and is well mixed in the atmosphere.

Impacts of power-plant emissions on attainment of air
quality standards for ozone, PM, and regional haze are
most often simulated with regional-scale Eulerian photo-
chemical models such as the Community Multiscale Air
Quality (CMAQ) model (Byun and Schere 2006) or the
Comprehensive Air Quality Model with Extensions
(CAMx) (www.camx.com). These models provide the
best available representation of a wide range of oxidant
concentrations and atmospheric conditions that influence
formation of ozone and PM from precursor gases.
Linking photochemical model sensitivity results with con-
centration-response functions in a health effects model
such as the Benefits Mapping and Analysis Program
(BenMAP) (US EPA 2015a) allows associated health
effects to be computed (Hubbell, Fann, and Levy 2009).
However, these models are computationally intensive to
run for testing sensitivity to individual sources (Cohan
et al. 2006), often limiting simulations to short episodes
for regulatory purposes (Cohan et al. 2007).

Recently, reduced-form models such as the Air
Pollution Emission Experiments and Policy (APEEP)
(Muller 2014) and the Estimating Air pollution Social
Impact Using Regression (EASIUR) (Heo, Adams, and
Gao 2016) models have been introduced to more effi-
ciently link point source emissions to health outcomes.
The reduced-form models extract pollutant-emission
responses from hundreds of runs of dispersion models
or regional photochemical models and associate them
with population data and concentration-response func-
tions to estimate monetized health impacts (Muller and
Mendelsohn 2007). The reduced-form models offer the
advantages of fast calculations based on long-term under-
lying simulation periods, but do not fully represent the
temporal variability of individual sources or fine-scale
features of regional photochemistry. Because reduced-
form models are relatively new, there is a lack of studies
comparing them and regional photochemical models.

This work seeks to quantify the impacts of potential
closures on greenhouse gas and criteria pollutant

emissions, air quality, regulatory attainment, and
human health through a modeling analysis of 13 coal-
fired power plants in Texas. We compare results from
a regional photochemical model (CAMx) and two
reduced-form models (APEEP and EASIUR).
Quantifying these impacts on a per-megawatt-hour
basis allows us to compare how the societal benefits
of coal plant closures depend on choices of which
facilities are closed. To our knowledge, this is the first
study to simultaneously examine the climate, photoche-
mical, health, and regional haze impacts and financial
viability of multiple power plants, and the first to com-
pare CAMx with APEEP and EASIUR for point source
impacts.

Methods and data

Photochemical modeling

Photochemical modeling was conducted with version
6.30 of CAMx. The gas chemistry mechanism used was
Carbon Bond 6 Revision 2 (CB6r2) (Hildebrandt Ruiz
and Yarwood 2013), and the aerosol chemistry was
solved using the default CAMx processes (RADM-AQ,
ISORROPIA, and SOAP), using a static two-mode
coarse/fine (CF) size distribution (Chang et al. 1987;
Nenes, Pandis, and Pilinis 1998, 1999; Strader,
Lurmann, and Pandis 1999).

The model included a modeling domain of three
nested grids (Figure 1). These included a coarse grid of
36-km cells covering all of North America, a medium
grid of 12-km cells covering all of Texas and some of the
surrounding states, and a fine grid of 4-km cells covering
just the area of interest within Texas.

Simulation inputs were taken from the Texas
Commission on Environmental Quality (TCEQ)
Future Year 2017 Case, released December 5, 2016
(TCEQ 2016b), with 2012 meteorology simulated by
the Weather Research and Forecasting (WRF) model
(Skamarock et al. 2008) and 2017 emissions extrapo-
lated from 2015 emissions provided by US EPA
(2017b). To obtain the projected 2017 emissions for
the power plants, the emissions for each hour of
the day were averaged across every day of each
month of 2015, to get a diurnal cycle of emissions
that was applied to every day in the respective month
(i.e., every day in January had the same emissions
cycle, every day in February had the same emissions
cycle, etc.). Then the NOx emissions rates were
increased by a scaling factor specific to each plant
based on the effects of the Cross State Air Pollution
Rule and the Emissions Banking and Trading
Programs, but the SO2 emissions were not. More
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detailed information on the development of these
inputs and on the TCEQ model can be found in
Chapters 2 and 3 of TCEQ (2016a). Variabilities
in daily emissions rates at each power plant are
shown in Figures SI1 and SI2.

All runs were conducted on a High Throughput
Computing (HTC) Cluster of the Rice Big Research Data
(BiRD) cloud infrastructure (80 dual processor HP SL230s
nodes and 16 cores supporting two threads on each node).
TCEQ evaluated its model for accuracy in both themeteor-
ological data and ambient air pollution data for ozone and
its precursors. Overall, the model outperformed EPA
benchmarks for regulatory modeling, although it under-
predicted some of the highest ozone peaks (TCEQ 2016a).
Because the same inputs were used for this study, and
because ozone concentrations did not change significantly
with aerosol chemistry included, these model evaluations
were sufficient to indicate that the model used in this study
also performed adequately for meteorology and gas-phase
pollutants.

Model evaluation

TCEQ’s simulation did not include aerosol processes
needed to simulate PM2.5. We conducted sensitivity

tests that confirmed that our inclusion of the aerosol
chemistry capabilities of CAMx did not substantially
change ozone concentrations or their sensitivity to
power-plant NOx emissions. In order to evaluate the
model performance in terms of PM2.5, modeled con-
centrations averaged over all episode days for total
PM2.5 and major PM2.5 species were compared to
observed 2012 concentrations at monitors averaged in
the same manner. The comparisons are imprecise, since
the model used 2017 projected emissions with 2012
meteorology, whereas the observations are from 2012,
but are the best available since TCEQ did not model
PM in 2012. At the power plants considered here, SO2

emissions declined by 13% and NOx emissions by 18%
from 2012 to 2017. However, PM precursors such as
biogenic emissions were not affected by the projections.
The model-simulated concentrations were moderately
lower than the 2012 observations for total PM2.5, sul-
fate, and ammonium (normalized mean bias [NMB]
−13%, −31% and −9%, respectively), consistent with
the reduction in SO2 emissions. However, the model
sharply underestimated nitrate (NMB −84%) (Table 1).
Similar underestimates of nitrate have been documen-
ted in other summertime simulations (e.g., Morris et al.
2005; Tesche et al. 2006); nitrate was a small portion of

Figure 1. CAMx modeling domains with resolution of 36, 12, and 4 km (TCEQ 2016a).
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total PM2.5 observed at Texas monitors during the
episode (0.31 – 0.41 µg/m3; 3 – 5%). Organic carbon
evaluations were not quantified because of the uncer-
tainty involved in scaling organic carbon measurements
(El-Zanan et al. 2005), and because coal-fired power
plants are not major sources of the hydrocarbons that
form organic aerosols in Texas.

Unfortunately, estimating confidence intervals for
responsiveness of ozone and PM2.5 to precursor emissions
in photochemical models is extraordinarily complex (e.g.,
Beddows et al. 2017; Digar, Cohan, and Bell 2011; Huang
et al. 2017). Thus, uncertainty analysis of the CAMx
model sensitivity results is beyond the scope of this study.

Air pollution episodes

Modeling was conducted for two separate 2-week episodes,
using WRF-simulated meteorology from June 15–20 and
August 1–14, 2012 (Figure 2). These episodes were chosen

based on high ozone concentrations in and around Harris,
Bexar, Dallas, and Tarrant counties in the Base Case. These
counties have the highest peak ozone concentrations in
Texas and are thus the focus of regulatory efforts. Ozone
concentrations during the episodes were 13–21% higher
than observed during the full ozone season in these coun-
ties, and PM2.5 concentrations were 17–20% higher than
the annual averages (Table SI4).

In addition to the simulation with “Base Case” projected
2017 emissions, each “zero-out” run was conducted by
removing one of the 13 highest-emitting coal-fired power
plants in the fine modeling domain. Zeroing out power
plants one at a time is a reasonable approach since impacts
of two plumes tend to be additive rather than nonlinear
when interactions occur substantially downwind (Cohan
et al. 2005), as is the case here. The capacity, generation,
and emissions of those power plants are shown in Table 2.
Information on control technologies for those power plants
is shown in Table SI1.

Emissions

Emissions depend strongly upon control technologies.
For example, SO2 emissions per MWhr are more than
an order of magnitude higher at the facilities that lack
desulfurization devices (Big Brown, Coleto Creek,
J T Deely, and Welsh) than at plants where all the
units have wet scrubbers (Fayette, J K Spruce, and
Oak Grove). At Monticello and W A Parish, only
certain units are scrubbed and thus overall SO2 emis-
sions are high. Differences in NOx emissions per
MWhr are less extreme, since all of the power plants

Table 1. Performance statistics for CAMx simulations of total
and speciated PM2.5, evaluated against observations at regula-
tory monitors.

Total PM2.5 Nitrate Sulfate Ammonium

Mean bias −1.4 −0.3 −0.8 −0.1
Mean error 3.5 0.3 0.8 0.3
Mean normalized bias −22% −84% −30% 2%
Mean normalized error 27% 84% 30% 42%
Normalized mean bias −13% −84% −31% −9%
Normalized mean error 31% 84% 31% 40%
Mean fractional bias −8% −147% −36% −7%
Mean fractional error 48% 147% 36% 43%
Root mean square error 4.5 0.3 0.9 0.3

Note. For Mean Bias, Mean error, and Root mean square error, the units are
µg/m3.

Figure 2. Base Case modeled MDA8 ozone concentrations averaged within selected counties of Texas.
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use some technologies to reduce NOx emissions.
However, the high-performing selective catalytic reduc-
tion devices at W A Parish, necessitated by its location
within an ozone nonattainment region, enable it to
emit a factor of 5 less NOx per MWhr than the highest
emitting power plants. We considered only smokestack
emissions from coal combustion, neglecting the
upstream emissions from coal mining and transport,
which add about 6% to the greenhouse gas footprint
(Venkatesh et al. 2012), and fugitive dust from the coal
pile (Mueller et al. 2015).

Air quality impacts

Average impacts were determined by differencing the
maximum daily 8-hr average (MDA8) ozone and daily

24-hr average (DA24) PM2.5 concentrations across the
fine domain, for each day of each episode, between the
Base Case and each zero-out case. EPA has set ambient
air quality standards at 70 ppb for fourth highest
MDA8 ozone and 12 μg/m3 for annual average PM2.5.
Since this study did not simulate a whole year, the
modeled changes to monitor concentrations do not
translate perfectly to these regulatory limits, especially
since high-ozone periods were chosen for the episodes
(Table SI4), but they can indicate the scope of the
expected impacts. The representativeness of episodes
is especially a concern for ozone, due to the strongly
nonlinear response of ozone concentrations to
emissions.

For ozone, regulatory impacts were analyzed at the 26
monitors (Figure 3) for which the 2015 design values (DV)

Table 2. Capacities, generation, daily SO2 and NOx emissions (averaged over all episode days), and annual CO2 emissions (2015 data)
for coal-fired power plants in Texas (US EPA 2017b).

Capacity
(MW)

Annual generation
(GWhr/yr)

Unscaled generation
(GWhr/day)

Scaled generation
(GWhr/day)

SO2

(tpd)
NOx

(tpd)
CO2

(tpy)

Big Brown 1,208 8,200 24.7 20.3 141.6 13.6 8,900,000
Coleto Creek 635 3,400 12.7 14.6 29.3 8.5 3,400,000
Fayette Power Project 1,636 9,400 34.3 34.6 3.3 18.9 10,200,000
J K Spruce 1,350 4,800 20.2 25.0 1.9 11.2 5,200,000
J T Deely 840 3,900 15.7 24.3 38.6 12.4 4,300,000
Limestone 1,689 9,800 33.8 22.1 58.3 19.7 9,900,000
Martin Lake 2,455 11,000 40.7 31.6 70.6 27.3 12,500,000
Monticello 1,955 5,200 33.0 33.9 132.2 26.8 5,900,000
Oak Grove 1,665 12,800 39.8 46.8 11.5 16.2 13,200,000
San Miguel 391 2,400 7.9 6.2 17.2 5.6 3,100,000
Sandow 600 4,500 13.3 22.4 59.8 7.3 4,900,000
W A Parish 2,499 16,100 53.8 63.7 144.9 15.5 16,300,000
Welsh 1,584 4,200 14.8 11.3 34.1 11.2 4,600,000

Figure 3. Locations of monitors of interest and Class I areas.
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exceeded the 70 ppb MDA8 ozone standard. For each of
these monitors, the effect of each zero-out case was mea-
sured as (1) the average decrease in the MDA8 ozone
concentration across all days and (2) the maximum
decrease in the MDA8 ozone concentration across all days.

For PM2.5, all Texas monitors attain the 12-μg/m3

annual standard, but it is possible that EPA could
tighten the standard in the future. The World Health
Organization sets a guideline value of 10 μg/m3 for
annual PM2.5 (http://www.who.int/mediacentre/fact
sheets/fs313/en), a level exceeded by some Texas moni-
tors. Thus, for PM2.5 we focus on effects at the one
monitor in each of the four major Texas metropolitan
areas (Dallas–Fort Worth, Houston, San Antonio, and
Austin) that had the highest 2015 DV (Figure 3). For
each of these monitors, the effect of each zero-out case
was measured in two ways: (1) the average decrease in
the PM2.5 concentration across all days and (2) the
maximum decrease in the DA24 PM2.5 concentration
across all days. Impacts of the power-plant plumes on
particle-phase water were excluded.

Climate impacts

Climate impacts were assessed based on the CO2 emis-
sions rate of each power plant. Upstream emissions
from coal mining and transport were not considered.
We assumed a $52/short ton monetized social cost of
CO2 emissions, based on interpolating between the
2015 and 2020 estimates under a 3% discount rate
from the Interagency Working Group on Social Cost
of Greenhouse Gases (2016), and converting to 2017
dollars.

Visibility impacts

Changes in visibility at Class I Areas were evaluated using
the IMPROVE algorithm (Pitchford et al. 2007). Class
I Areas are a group of 158 national parks, fish and wildlife
refuges, and Forest Service Wilderness Areas that were
given the greatest level of air quality protection under
the Clean Air Act in a 1977 amendment. In this study,
effects on Big Bend National Park, Guadalupe Mountain
National Park, Salt Creek Fish & Wildlife Refuge, Wichita
Mountain Fish &Wildlife Refuge, and Caney Creek Forest
Service Wilderness Area were considered (Figure 3). To
determine the effects on visibility at each of these Class
I Areas, the concentrations of each of the components of
the IMPROVE equation were averaged for each episode.
Then the IMPROVE equationwas used to calculate average
light extinction for each episode, using the hygroscopicity
for that month (Pitchford et al. 2007). These values were
then averaged and used to calculate a Haze Index

(in deciview, dV) across both episodes. A visibility change
of 1 dV is generally recognized to be humanly perceptible
(US EPA 2016b).

BenMAP modeling of health impacts

Health impacts stemming from the changes in air
quality were analyzed with BenMAP, using the same
health impact and valuation functions as were used
by US EPA (2015b) to determine and valuate mor-
tality due to long-term exposure to PM2.5 (Krewski
et al. 2009; Lepeule et al. 2012) and short-term expo-
sure to ozone (Smith, Baowei, and Switzer 2009;
Zanobetti and Schwartz 2008) (see Table SI2 for
details). For ozone, mortality of all ages was consid-
ered, but for PM2.5, only adult mortality was consid-
ered because the studies used considered only adult
mortality and, based on the results from US EPA
(2015b), the impacts on infant mortality would be
small in comparison. Note that effects from non-
mortality-related impacts were not included in this
analysis. Because not all impacts are included, our
results are conservative estimates of total impacts.
Because two health impact functions were used to
calculate both ozone and PM2.5 impacts, the two
results were averaged to obtain the impact from
each pollutant. Also, in order to capture the uncer-
tainty in the impacts, we calculated the 95% confi-
dence intervals (CIs) of the health impact functions
and the valuation functions. We scaled the ozone
impacts by 0.42, following the approach of Digar,
Cohan, and Bell (2011), since we expect NOx reduc-
tions to reduce ozone only during the 5-month ozone
season. Ozone itself remains unhealthful throughout
the year (Bell et al. 2004), but is insensitive to or
even negatively correlated with NOx when cool
weather suppresses biogenic VOC emissions (Zhang
et al. 2009; Luecken et al. 2018). We did not scale the
PM2.5 impacts, because NOx and SO2 contribute to
PM2.5 year-round, albeit with temporal variations
that cannot be assessed here. Each of these impacts
was also normalized based on daily-average genera-
tion (MWhr/day).

Because modeling episodes were chosen based on
high ozone concentrations, it is possible that this scal-
ing method overestimated ozone impacts (and, to
a lesser extent, PM2.5 impacts). However, these biases
will be lessened by the facts that impacts were calcu-
lated based on changes in concentrations, rather than
absolute concentrations, and that ozone and PM2.5

concentrations during these episodes were just
13–21% higher than seasonal and annual averages,
respectively (Table SI4).
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Reduced-form modeling of health impacts

Reduced-form modeling was used to provide alternate
estimates of the monetized mortality impacts of the
power-plant emissions considered in the preceding.
We obtained version 2 of APEEP (AP2) from its devel-
oper Nick Muller and adopted the updates described by
Pourhashem et al. (2017). We obtained EASIUR from
its developer Jinhyok Heo (http://barney.ce.cmu.edu/~
jinhyok/easiur).

APEEP computes the ozone impacts of NOx emis-
sions and the PM impacts of NOx and SO2 emissions
from each county and each of three emissions heights
using a Gaussian plume model (Muller 2011; National
Research Council 2010). Some applications of APEEP
have tallied monetized impacts as an aggregate of mar-
ginal effects of emissions on mortality, morbidity, agri-
culture, visibility, and recreation (Muller 2014). Here,
we considered only the premature mortality impacts,
since they dominate other impacts on a monetized basis
(U.S. EPA, 2011) and for consistency with EASIUR and
BenMAP as applied here. APEEP considers impacts of
short-term ozone exposure based on Bell et al. (2004),
short-term PM2.5 exposure based on Klemm and
Mason (2003), and long-term PM2.5 exposure based
on Pope et al. (2002). EASIUR considers only the
impacts of PM2.5 exposure based on Krewski et al.
(2009), which is the less responsive of the two functions
averaged in the BenMAP analysis (Table SI4). We trea-
ted emissions from J K Spruce, San Miguel, Sandow,
and Welsh as being released from medium stacks
(250–500 m effective plume height) and the remainder
from tall stacks (> 500 m effective plume height), fol-
lowing the recommendation of Nick Muller (personal
communication, March 2018). APEEP does not simu-
late emissions from Oak Grove directly since it opened
after 2008, so we use its estimates of marginal damages
from emissions from its county at a medium plume
height (250–500 m).

EASIUR considers only mortality impacts from PM2.5

resulting from emissions in each grid cell (Heo et al.
2016). We applied EASIUR to NOx and SO2 emissions
from each power plant, mapped to the corresponding
EASIUR grid cell. EASIUR models emissions from
ground-level, 150-m, and 300-m sources; we assumed
a 300-m stack height for all plants. EASIUR computes
source–receptor relationships using a tagged emissions
version of the CAMx model. That provides a more com-
prehensive representation of atmospheric photochemis-
try than the Gaussian plume model used by APEEP, but
limits meteorological inputs to a single year, 2005.

APEEP sets the value of a statistical life (VSL) at
$6 million in 2000 USD (Muller 2014), and EASIUR at

$8.6 million in 2010 USD (Heo, Adams, and Gao 2016).
The user can choose the value of VSL in BenMAP. U.S.
EPA (2015b) reviewed 26 published estimates of VSL and
chose a central estimate of $10.0 million in 2011 USD
based on projected 2024 income levels. To neutralize the
effect of these assumptions on comparisons and to be
roughly consistent with US EPA (2015b), we adjusted all
values to a VSL of $10 million in 2016 USD.

Profitability assessment

Finally, we estimated the profitability of each power plant
based on market conditions in 2016. The data used in this
analysis were taken from SNL Financial’s online data
portal. For fuel costs, we used plant-specific estimates
reported by each plant or calculated by SNL. We assumed
nonfuel variable operations and maintenance (O&M)
costs equaled the 2016 average of the costs for
Harrington, Tolk, Welsh, Pirkey, and Oklaunion power
plants, since these plants are regulated entities and must
therefore report these costs. Similarly, the annual capital
expenses (Cap-ex) for each plant in this study were
assumed to be equal to half of the average across those
same five plants of the averaged 2006 to 2016 Cap-ex,
which were calculated as the yearly difference between the
“Total Cost” values in their FERC Form 1. This number
was halved because it is likely that as these plants become
less financially stable, they will put less money than in the
past into Cap-ex, if at all possible, and that these plants
have lower capital expenses than the regulated entities.

For revenues, ERCOT forward market prices were
pulled from SNL Financial on July 24, 2017, and aver-
aged across all ERCOT zones and then between on-
peak and off-peak prices to obtain an overall monthly
ERCOT market price for 2016. Monthly generation for
each plant was taken as reported by SNL Financial.
Using all of these data, a pretax earnings estimate for
2016 was calculated for each power plant.

Results and discussion

Climate impacts

CO2 emission rates fell in a narrow range from 1.00 to
1.26 short tons/MWhr in 2015. These values are direct
emissions from combustion, and do not consider the
life cycle of coal mining and transport or power-plant
construction. The range in CO2 emission rates reflects
the relative efficiencies of the power plants and the
carbon content of their coal. None of the plants cap-
tured their carbon emissions in 2015, though
W A Parish now captures CO2 from a portion of the
slipstream of one of its four units. San Miguel and
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Monticello had the highest emission rates (1.26 and
1.15 short tons/MWhr, respectively), in part due to
their use of lignite, which has a lower heat content
than other coal.

Ozone impacts

Ozone impacts were far more varied across the plants,
due to their sharply different NOx emissions and the
spatial variability of ozone sensitivity to NOx. Averaged
over the fine domain, Martin Lake and Monticello
formed the most ground-level ozone, about 0.06 ppb
each (Table 5). As can be seen in Figure 4, ozone
impacts were most intense in counties adjacent to the
plants, and extended for hundreds of kilometers
downwind.

Normalized by daily generation, San Miguel,
Limestone, and Welsh most strongly impacted ozone,
with impacts near 2.5 ppt/GWhr. Impacts were below 1

ppt/GWhr for four other power plants (Figure 5),
reflecting their lower NOx emission rates (Table 2).

As expected, the power plants closest to each of the
three main metropolitan areas (Dallas–Fort Worth,
Houston, and San Antonio) tended to have the greatest
effects on regulatory monitors in those regions
(Figure 6).

In the Dallas–Fort Worth region, averaged over the
episodes, Limestone had the greatest impact on a single
monitor (0.17 ppb at Dallas Hinton), while Fayette Power
Project had the greatest impact on the most monitors (7
of the 12). Monticello had the greatest impact on
a monitor on a single day (1.7 ppb at Dallas Hinton).
At all four of the monitors with the highest ozone design
value, Fayette Power Project, Limestone, and Oak Grove
had the largest impacts (Figure 6).

In the Houston region, W A Parish had the largest
impact on episode-average ozone at 10 of the 12 moni-
tors examined, including 0.48 ppb at Houston Croquet.

Figure 4. Difference between MDA8 ozone in Base Case and power-plant zero-outs averaged over June episode for plants with high
overall impacts (ppb).
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Its peak single-day MDA8 ozone impact was 3.3 ppb at
the Northwest Harris County monitor. The large ozone
impacts reflect the proximity of W A Parish in the
southwest corner of the Houston region and its large
size, despite its stringent NOx control from selective
catalytic reduction. W A Parish had by far the largest
impacts, followed by Martin Lake, on all four of the
monitors with the highest DV (Figure 6).

In the San Antonio region, the nearby J T Deely had
the most impact on episode-average ozone at both moni-
tors, including 0.48 ppb at Camp Bullis. Two other nearby
power plants, J K Spruce and San Miguel, ranked second
and third. J K Spruce had the largest single-day ozone
impact, 1.5 ppb at San Antonio Northwest.

In each region, daily variations in power-plant
impacts were not significantly correlated with daily
ozone concentrations. In other words, power plants
did not have a consistently larger impact on high-
ozone days than on average- or low-ozone days.

PM2.5 impacts

As with ozone, PM2.5 impacts varied widely across the
plants. Averaged over the fine domain and episodes, the
largest amounts of PM2.5 formed from W A Parish (0.06
μg/m3), Monticello (0.03 μg/m3), Big Brown (0.03 μg/
m3), and Martin Lake (0.02 μg/m3) (Table 5). These four
plants were also the largest SO2 emitters (Table 2). All
other plants had PM2.5 impacts below 0.015 μg/m3.
Normalized by daily generation, Big Brown had the lar-
gest domain-wide impact (1.3 ng/m3/GWhr) (Figure 8).

As shown in Figure 9, though located in the Houston
region, W A Parish had the largest episode-average
impact on PM2.5 not only at the most polluted monitor

in the Houston region (Clinton; 0.15 μg/m3), but also in
the Dallas–Fort Worth region (Convention Center; 0.08
μg/m3) and Austin region (AustinWebberville Road; 0.05
μg/m3). In the San Antonio region, nearby J T Deely had
the largest impact at its most polluted monitor (San
Antonio Northwest; 0.06 μg/m3). After normalizing by
daily generation, though, Sandow had the largest impact
in Dallas–Fort Worth and Austin (3.8 and 3.0 ng/m3/
GWhr, respectively), while W A Parish remained the
most important in Houston and J T Deely in San
Antonio (2.8 and 3.7 ng/m3/GWhr, respectively).

In terms of maximum daily impacts, Monticello had the
greatest effect in Dallas–Fort Worth (0.43 μg/m3),
W A Parish in Houston (0.92 μg/m3), Coleto Creek in
San Antonio (0.47 μg/m3), and Big Brown in Austin (0.40
μg/m3).

Visibility impacts

As shown in Figure 10, among the Class I Areas on
an episode-average basis, Caney Creek was most
impacted by the power plants—0.25 dV from
Monticello, 0.21 dV from Big Brown, 0.16 dV from
Parish, and 0.12 dV from Martin Lake. Since 1 dV is
recognized as humanly perceptible (US EPA 2016b),
these collective impacts can be substantial, especially
on days with higher than average impacts. In the
Wichita Mountains, average impacts were 0.14 dV
from Parish and 0.11 dV from Big Brown. For all
other Class I Areas, impacts from individual power
plants were below 0.1 dV. This does not necessarily
rule out concern about haze impacts in those other
areas, since there could be impacts on peak days
during nonsummer months.

Figure 5. Impacts on MDA8 ozone averaged over all days and over the fine-scale domain and normalized by daily GWhr.
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Health impacts

The air quality impacts computed by CAMx were input
into BenMAP to compute resulting impacts on health.
BenMAP provides results both in terms of increased
mortality and associated monetized impacts, with
valuation set at approximately $10 million per death.
The 95% CI ranges represent uncertainty only in the
health impact functions and valuation functions within

BenMAP, because uncertainties of photochemical
model outputs from CAMx cannot be readily
computed.

Overall in the CAMx/BenMAP modeling, power-plant
mortality impacts via PM2.5 were more than an order of
magnitude larger than those via ozone (Table 5). Martin
Lake and Limestone created the most health effects due to
ozone (1.1 [0.4–2.0] and 1.0 [0.4–1.9] deaths/yr,

Figure 6. Three largest impacts on MDA8 ozone averaged over all days at the monitors with the highest design values in the (a)
Dallas–Fort Worth, (b) Houston, and (c) San Antonio regions.
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respectively), whereas W A Parish and Big Brown had the
greatest effects from PM2.5 (177 [77–353] and 81 [35–162]
deaths/yr, respectively). The top five most impactful plants
for each pollutant are shown in Table 3.

After normalizing by generation, San Miguel and
Limestone had the largest estimated impacts from
ozone (0.13 [0.05–0.24] and 0.13 [0.05–0.23] deaths/
TWhr, respectively) and Sandow, Big Brown, and
W A Parish had the largest impacts from PM2.5 (9.1
[4.0–18.1], 9.0 [3.9–18.0], and 9.0 [3.9–18.0] deaths/
TWhr, respectively). The rankings result from relatively

high SO2 emission rates and, for W A Parish, proximity
to Houston.

When considering the value of the impacts from
both ozone and PM2.5, the largest normalized health
impacts (Sandow, Big Brown, and W A Parish) each
correspond to a monetized value of approximately $90/
MWhr. Each of these plants emitted large amounts of
SO2 upwind of populated areas. By contrast, power
plants with modern SO2 controls such as Fayette,
J K Spruce, and Oak Grove (Table SI1) caused health
impacts of roughly $10/MWhr. For comparison, Levy,
Baxter, and Schwartz (2009) reported a range of $20 to
$1,570/MWhr as the health effects associated with elec-
tricity generation from coal across U.S. power plants.

Significant additional monetary impacts are realized
when considering the social cost of CO2 emissions.
Using a social cost of carbon of $52/short ton (in
2017 dollars), climate impacts range from $47/MWhr
at Limestone to $59/MWhr at San Miguel. This narrow
range reflects the relatively uniform rates of CO2 emis-
sions compared to the starkly divergent SO2 emission
rates.

Combining all societal impacts (Figure 11), Big
Brown and Sandow had the largest impacts ($143/
MWhr), while all of the 13 plants had impacts above
$57/MWhr. That is far higher than the average whole-
sale cost of electricity in ERCOT, which was just $22/
MWhr in 2016, according to data from SNL Financial.

The reduced-form models APEEP and EASIUR pro-
vide alternatives to CAMx/BenMAP for computing
monetized health impacts. For ozone, CAMx/BenMAP
estimates an impact of $0.85/MWhr averaged across
the power plants, whereas APEEP (normalized to a -
$10 million VSL) estimates $0.23/MWhr. This differ-
ence likely arises from the use of high ozone episodes in
CAMx and annual conditions in APEEP. EASIUR does
not model ozone. For PM2.5, CAMx/BenMAP estimates
$44/MWhr, APEEP estimates $30/MWhr, and EASIUR
estimates $42/MWhr. The lower estimates from APEEP
may result in part from its use of a relatively simple
Gaussian plume model rather than the more sophisti-
cated representation of photochemistry in CAMx and
EASIUR.

Comparing individual power-plant impacts across
the three methods, the coefficient of determination
between EASIUR and CAMx/BenMAP results was
R2 = 0.80, and between APEEP and CAMx/BenMAP
it was R2 = 0.63 (Figure 12). The methods consistently
ranked several power plants (e.g., Big Brown) as having
the largest impacts on health per MWhr, and certain
other plants (e.g., J K Spruce) having an order of
magnitude smaller effect. One notable difference is
that EASIUR indicated a large spread between the per-

Table 3. Power plants with the five largest impacts on mortality
summed over the fine-scale domain, as computed by CAMx/
BenMAP. Values in parentheses are 95% CIs of health impact
functions.

Normalization

None (deaths/year) Generation (deaths/TWhr)

MDA8 Ozone Martin Lake San Miguel
1.1 0.13

(0.4, 2.0) (0.05, 0.24)
Limestone Limestone

1.0 0.13
(0.4, 1.9) (0.05, 0.23)
W A Parish Big Brown

1.0 0.1
(0.4, 1.8) (0.04, 0.18)
Monticello J T Deely

0.9 0.1
(0.4, 1.7) (0.04, 0.17)

Fayette Power Project Welsh
0.9 0.1

(0.4, 1.7) (0.04, 0.17)
PM2.5 W A Parish Sandow

177 9.1
(77, 353) (4.0, 18.1)
Big Brown Big Brown

81 9.0
(35, 162) (3.9, 18.0)
Monticello W A Parish

76 9.0
(33, 152) (3.9, 18.0)
Sandow Monticello

44 6.3
(19, 88) (2.8, 12.6)

Martin Lake J T Deely
41 5.1

(18, 83) (2.2, 10.2)

Table 4. Estimated variable O&M costs and pretax earnings in
2016 for power plants in Texas.

Variable O&M
($/MWhr)

Pretax earnings
(million $)

Pretax earnings
($/MWhr)

Sandow 17.41 −1.7 −0.44
Coleto Creek 25.11 −25.1 −8.04
Oak Grove 19.75 −29.2 −2.41
Limestone 20.88 −46.8 −5.11
Big Brown 24.03 −49.0 −7.80
Martin Lake 19.98 −49.3 −4.39
J T Deely 33.62 −53.7 −22.11
San Miguel 43.67 −63.8 −27.15
Welsh 31.42 −75.4 −16.80
Monticello 26.52 −89.4 −11.87
J K Spruce 31.93 −91.3 −16.76
Fayette 26.65 −100.3 −9.88
W A Parish 25.99 −124.2 −9.87
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MWhr health impacts of Big Brown, Sandow, and
W A Parish, whereas CAMx/BenMAP computed
a narrower spread (Figure 12). That is because CAMx
modeled the W A Parish plume to frequently impact
densely populated areas in the nearby Houston suburbs
and the Dallas–Fort Worth region downwind during

the episodes (Figure 7), counteracting its lower per-
MWhr emissions rate (Table 2). The coarse modeling
of EASIUR muted the spatial differences of plume
locations and population density, and thus found per-
MWhr health impacts that more closely resembled the
spread in per-MWhr emissions.

Table 5. Results of the six main impact metrics (maximum MDA8 ozone, average MDA8 ozone, maximum DA24 PM2.5, average DA24
PM2.5, mortality from ozone, mortality from PM2.5) for each of the 13 power plants of interest in CAMx/BenMAP modeling.

Maximum MDA8 ozone
(ppb)

Average MDA8 ozone
(ppb)

Maximum DA24 PM2.5

(μg/m3)
Average DA24 PM2.5

(μg/m3)
Ozone health

(deaths)
PM2.5 health
(deaths)

Big Brown 2.1 0.04 0.5 0.031 1 81
Coleto Creek 1.7 0.03 0.2 0.009 0 22
Fayette Power Project 2.2 0.06 0.1 0.003 1 7
J K Spruce 0.7 0.02 0.1 0.001 1 5
J T Deely 0.7 0.03 0.1 0.009 1 29
Limestone 1.8 0.05 0.2 0.014 1 41
Martin Lake 2.9 0.06 0.5 0.020 1 42
Monticello 4.4 0.06 1.0 0.033 1 76
Oak Grove 1.6 0.05 0.2 0.005 1 15
San Miguel 1.2 0.02 0.1 0.003 0 7
Sandow 1.4 0.02 0.6 0.015 1 44
W A Parish 1.0 0.03 1.2 0.062 1 177
Welsh 2.2 0.03 0.2 0.008 0 18

Note. Maximum refers to the grid cell with the maximum impacts after averaging over all days.

Figure 7. Difference between PM2.5 in Base Case and power-plant zero-outs averaged over June episode for plants with high overall
impacts (µg/m3).
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Figure 8. Impacts on PM2.5 averaged over all days and over the fine-scale domain and normalized by daily GWhr.

Figure 9. The three largest impacts from power plants on PM2.5 averaged over all days at the monitor in each region with the
highest PM2.5 design value.

Figure 10. The three largest impacts from power plants on visibility at each Class I area, averaged over all episode days.
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Note that the EASIUR results exclude ozone, but
that ozone represents a small portion of the CAMx/
BenMAP and APEEP monetized impacts. Also, note in
Table SI2 that EASIUR uses only the less responsive
one (Krewski et al. 2009) of the two PM2.5 concentra-
tion-response functions considered in our application
of BenMAP (Krewski et al. 2009; Lepeule et al. 2012);
scaling the EASIUR results by a factor of 1.62 would
normalize for that difference. The form of the PM2.5

concentration-response function embedded into
APEEP (Pope et al. 2002; Table SI3) differs from the
ones used by BenMAP and EASIUR, and thus cannot
be readily scaled to match the others.

Profitability analysis

Our analysis of power prices, fuel and other operating and
maintenance costs, and discounted capital expenses

Figure 11. Societal costs of generation for each power plant, based on a $52/ton social cost of CO2 and the mortality impacts of
PM2.5 and ozone.

Figure 12. Monetized mortality impacts from each power plant simulated by APEEP or EASIUR compared to the results from CAMx/
BenMAP.
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indicates that none of the 13 coal-fired power plants earned
a net profit in 2016 (Table 4). Our estimates of net cash flow
range from –$1.7 million at Sandow to –$124.2 million at
W A Parish. Normalized by 2016 generation, losses ranged
from $0.44/MWhr at Sandow to $27.15/MWhr at San
Miguel. The range reflects the much lower variable O&M
costs for Sandow ($17.41/MWhr) than for San Miguel
($43.67/MWhr). Note that 9 of the 13 power plants had
fuel and other variableO&Mcosts that were, by themselves,
more expensive than the average ERCOT market price for
2016 as reported by SNL Financial ($22.10/MWhr).

It is possible that the closure of some of these plants will
lead to an increase in the ERCOTmarket price,which could
improve the financial situations of the plants that did not
close. This will become apparent in 2018, when four of the
plants considered here (Monticello, Big Brown, Sandow,
and JTDeely)will close. Thatmay bewhy other plants have
not closed already, despite their likely negative cash flows.
However, it is also possible that increased generationduring
this time period, namely, from natural gas and renewables,
will negate some or all of the positive effects of coal plant
closures on the finances of other coal plants.

Conclusion

Our results show fairly similar climate impacts from
each coal-fired power plant but an order of magnitude
range in impacts on ozone and PM2.5, both at regulatory
monitors and on a health or visibility basis, after normal-
izing by daily generation. Differing emissions control
technologies and proximity to urban areas drove the
differences in health impacts, while the narrow range
of efficiencies drove the similarities in CO2 emissions.

Ozone impacts may be overstated because the episodes
modeled included periods of high ozone concentrations,
although the differences from seasonal averages were mod-
est (Table SI4). Since ozone represents a small portion of
overall monetized valuations (Figure 11), the effect of epi-
sode selection bias on aggregate impacts will be muted.

Another caveat is that all of our health impacts
modeling apply what the Health Effects Institute calls
a “chain of accountability” to link emissions with ambi-
ent air quality, exposure, and ultimately human health
responses (Health Effects Institute 2003). Each link in
this chain compounds uncertainty. For example, the
historical concentration-response functions computed
by epidemiological studies in other regions will not
precisely represent conditions in Texas today.

We find that health impacts are more variable and
in some cases larger than climate impacts on
a monetized basis. In particular, power plants that
do not scrub their sulfur are most damaging to
health and visibility via impacts on particulate

sulfate. Setting policy solely based on carbon emis-
sions may mean foregoing opportunities to accelerate
progress on air quality, health, and visibility. Our
finding that particulate matter imposes the greatest
impact on human health is consistent with other
studies (Fann et al. 2012; Pope and Dockery 2006).

Sulfur emissions and associated PM2.5 have received
less attention in Texas than ozone-forming NOx, because
the state’s largest urban areas violate ambient standards
for ozone but not for PM2.5. In fact, TCEQ regulatory
modeling does not even simulate formation of PM2.5,
requiring us to reactivate this standard feature of the
CAMx model to conduct our analysis. While PM2.5 mod-
eling may be unnecessary for ozone attainment planning,
our results suggest that PM2.5 formation from SO2 emis-
sions is the leading cause of health impacts.

Our findings highlight opportunities for modeling
to inform policies that would enhance societal out-
comes as the Texas power market evolves. For now,
power-plant closure decisions are based almost
exclusively upon financial considerations of the
facility owner, emitting pollution virtually for free
within permitted limits. With health impacts per
MWhr varying by an order of magnitude across
facilities, policies targeting sulfur emissions and to
a lesser extent NOx could spur closures or emissions
abatement at the facilities most potent at forming
air pollution and associated health and visibility
impacts. Since it will take a number of years before
natural gas and renewable energy can fully replace
coal on the Texas grid, such policies could accelerate
the air quality and health benefits of the ongoing
transition from coal to cleaner sources of electricity.

A missed opportunity for accelerating those benefits
came with the reversal of the Regional Haze plan issued
by EPA for Texas at the end of the Obama
Administration (US EPA 2016b). That plan would have
required SO2 controls at eight of the highest emitting
power plants considered here. Given the poor financial
status of those plants as indicated by our study, such
a plan would likely have prompted most of those plants
to close or convert to natural gas, yielding substantial
benefits for climate, air quality, and health beyond the
stated purpose of reducing regional haze. Instead, EPA
in 2017 replaced the plan with a cap-and-trade scheme,
setting the cap higher than emissions in recent years
(2018b; US EPA 2017c). That will allow several power
plants to continue operating unscrubbed, resulting in
monetized health impacts that far exceed the market
price for their electricity.

Future work could compare the multifaceted
impacts of power plants elsewhere. Dispatch modeling
would be needed to explore how closures of some
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plants might lead to a rebound in utilization of remain-
ing plants. Also, because PM2.5 and associated regional
haze affect health and visibility year-round, it will be
important to model conditions outside the summer
ozone season. The correlation between results from
the CAMx/BenMAP, APEEP, and EASIUR approaches
suggests that both regional photochemical modeling
and reduced-form models are options for informing
decision making, though further study is needed to
compare the methods in other regions and time peri-
ods. Though EASIUR has a shorter track record than
APEEP, its more advanced photochemical modeling
and closer agreement with our direct modeling
(Figure 12) suggest that it deserves more attention in
future reduced-form modeling studies.
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